# Creating Continuous Search Spaces This example illustrates several ways to create continuous spaces space. ## Imports ```python import numpy as np ``` ```python from baybe.parameters import NumericalContinuousParameter from baybe.searchspace import SearchSpace, SubspaceContinuous ``` ## Settings We begin by defining the continuous parameters that span our space: ```python DIMENSION = 4 BOUNDS = (-1, 1) ``` ```python parameters = [ NumericalContinuousParameter(name=f"x_{k + 1}", bounds=BOUNDS) for k in range(DIMENSION) ] ``` From these parameter objects, we can now construct a continuous subspace. Let us draw some samples from it and verify that they are within the bounds: ```python subspace = SubspaceContinuous(parameters) samples = subspace.sample_uniform(10) print(samples) assert np.all(samples >= BOUNDS[0]) and np.all(samples <= BOUNDS[1]) ``` x_1 x_2 x_3 x_4 0 -0.366826 -0.051067 -0.998003 -0.120177 1 0.308255 -0.901468 0.880668 -0.804176 2 0.012609 0.809310 0.262887 0.870192 3 0.711953 -0.591982 0.916784 0.337323 4 -0.637266 0.828406 0.674422 0.604464 5 0.246625 -0.206930 -0.027990 0.215733 6 0.949788 0.868671 0.857553 -0.199934 7 -0.326737 0.895799 -0.146179 -0.702438 8 0.282363 0.498985 0.100210 -0.684339 9 0.667290 -0.292174 -0.094680 0.205067 There are several ways we can turn the above objects into a search space. This provides a lot of flexibility depending on the context: ```python # Using conversion: searchspace1 = SubspaceContinuous(parameters).to_searchspace() ``` ```python # Explicit attribute assignment via the regular search space constructor: searchspace2 = SearchSpace(continuous=SubspaceContinuous(parameters)) ``` ```python # Using an alternative search space constructor: searchspace3 = SearchSpace.from_product(parameters=parameters) ``` No matter which version we choose, we can be sure that the resulting search space objects are equivalent: ```python assert searchspace1 == searchspace2 == searchspace3 ```